機率筆記 (2)
1. Axioms of Probability
(1) For any event, P[A] ≧ 0
(2) P[S] =1 S : sample space,代表所有可能都發生
→ 由(1)、(2)可知,機率是介於 0 到 1 之間的數
(3) 互斥事件聯集的機率= 個別事件機率的加總
2. Equally likely outcomes : no one outcome is any more likely than any other
亦即每個可能性一樣 ( 沒有任何偏好 ),所以假設有 n 個 outcome,則每個 outcome 的機率都是 1/n。
3. Conditional probability 條件機率 : 滿足某條件下,某事情的機率。
P[A]=prior probability 先驗條件,P[A | B]=Conditional probability 條件機率,讀作 the probability of A given B。
條件機率的物理意義 : P[A] reflects our knowledge of the occurrence of A prior to performing an experiment.
而條件機率因為多給了已知條件,所以正確率得以大幅提升。
參考資料來源 — Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers by Roy D. Yates and David J. Goodman
(1) For any event, P[A] ≧ 0
(2) P[S] =1 S : sample space,代表所有可能都發生
→ 由(1)、(2)可知,機率是介於 0 到 1 之間的數
(3) 互斥事件聯集的機率= 個別事件機率的加總
2. Equally likely outcomes : no one outcome is any more likely than any other
亦即每個可能性一樣 ( 沒有任何偏好 ),所以假設有 n 個 outcome,則每個 outcome 的機率都是 1/n。
3. Conditional probability 條件機率 : 滿足某條件下,某事情的機率。
P[A]=prior probability 先驗條件,P[A | B]=Conditional probability 條件機率,讀作 the probability of A given B。
條件機率的物理意義 : P[A] reflects our knowledge of the occurrence of A prior to performing an experiment.
而條件機率因為多給了已知條件,所以正確率得以大幅提升。
參考資料來源 — Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers by Roy D. Yates and David J. Goodman
留言
張貼留言